SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 #### **OUESTION BANK (DESCRIPTIVE)** Subject: 20AG0724 - Solid Waste & By-Product Utilization Course & Branch: B.Tech - AGE Year & Sem: III Year & II Sem Regulation: R20 # UNIT –I INTRODUCTION OF SOLID WASTE MANAGEMENT | 1 | a | What is waste? Explain briefly about sources of waste. | [L1][CO1] | [6M] | | | |----|--|---|-----------|-------|--|--| | | b | Discuss about advantages and dis advantages of waste management | [L3][CO1] | [6M] | | | | | | system. | | | | | | 2 | a | What is recycling? Discuss about the benefits of recycling process. | [L1][CO1] | [6M] | | | | | b | Discuss about quality of recycle materials. | [L3][CO1] | [6M] | | | | 3 | a | Explain in detail about composting. | [L2][CO1] | [6M] | | | | | b | Discuss about advantages and disadvantages of composting. | [L3][CO1] | [6M] | | | | 4 | a | Explain incineration in solid waste management. | [L2][CO1] | [6M] | | | | | b | Explain briefly about Solid waste management. | [L2][CO1] | [6M] | | | | 5 | Exp | Explain about recovery of energy from municipal solid waste. | | [12M] | | | | 6 | Dis | cuss about the advantages and disadvantages of recycling process | [L3][CO1] | [12M] | | | | | wit | with examples. | | | | | | 7 | a | Explain about land filling process in waste management. | [L2][CO1] | [6M] | | | | | b | What are the Advantages and disadvantages of land filling? | [L1][CO1] | [6M] | | | | 8 | Discuss about possible ways for controlling the solid waste. | | | [12M] | | | | 9 | Exp | plain steps involved in effluent treatment. | [L2][CO1] | [12M] | | | | 10 | a | Compare between by- product and waste. | [L4][CO1] | [6M] | | | | | b | Explain food processing operation and associated waste. | [L2][CO1] | [6M] | | | ### UNIT –II BIO-ENERGY | 1 | a | Explain in detail about bioenergy. | [L2][CO2] | [8M] | |----|---|--|-----------|-------| | | b | Explain briefly about importance of bio mass. | [L2][CO2] | [4M] | | 2 | a | Write about the classification of bio mass. | [L1][CO2] | [8M] | | | b | Explain in detail about combustion process. | [L2][CO2] | [4M] | | 3 | a | Write about bio fuels and their raw materials. | [L1][CO2] | [6M] | | | b | Distinguish incineration and pyrolysis. | [L4][CO2] | [6M] | | 4 | a | Explain in detail about thermo chemical conversion. | [L2][CO2] | [6M] | | | b | Explain about liquefaction and gasification. | [L2][CO2] | [6M] | | 5 | Exp | Explain wet processes in biomass conversion technologies. | | [12M] | | 6 | a | Explain about fermentation. | [L2][CO3] | [6M] | | | b | Explain about gasification and steam gasification. | [L2][CO4] | [6M] | | 7 | Explain in detail about properties and characteristics of bio mass. | | [L2][CO2] | [12M] | | 8 | a | Write about chemical reduction and hydrogenation. | [L1][CO3] | [8M] | | | b | Differentiate thermo and bio chemical conversion technologies. | [L4][CO3] | [4M] | | 9 | Explain about the biomass conversion technologies. [L2][CO3] | | [12M] | | | 10 | Exp | plain dry processes in biomass conversion technologies. | [L2][CO3] | [12M] | #### UNIT-III GASIFIERS | a | Discuss about Gasification and Gasifier. | [L3][CO4] | [4M] | |---|--|--|--| | b | List out Classification of Gasifiers. | [L1][CO4] | [4M] | | c | Discuss about Fixed bed and fluidized bed Gasifiers. | [L3][CO4] | [4M] | | Write about problems in developments of Gasifiers. | | [L1][CO4] | [12M] | | Exp | plain in detail about steps involved in gasification process. | [L2][CO4] | [12M] | | Exp | plain about the chemistry of gasification process. | [L2][CO4] | [12M] | | a | Draw a flow chart for energy conservation routes and products from | [L2][CO1] | [4M] | | | bio mass. | | | | b | Discuss about conversion alternatives of gasification. | [L3][CO3] | [8M] | | Exp | plain about producer gas and its utilization. | [L2][CO2] | [12M] | | Explain Up- draft and down-draft Gasifier with neat sketch. | | | [12M] | | Explain in detail about different types of Gasifiers. [L2][CO4] [1 | | | [12M] | | Explain Cross-draft Gasifier with neat sketch. What are the advantages [I | | | [12M] | | and dis advantages of down draft Gasifier? | | | | | Explain in detail about fluidised bed Gasifier with neat sketch and what | | | [12M] | | are the advantages of fluidised bed Gasifier? | | | i l | | | b c Wr Exp Exp a b Exp Exp Exp Exp Exp Exp Exp | b List out Classification of Gasifiers. c Discuss about Fixed bed and fluidized bed Gasifiers. Write about problems in developments of Gasifiers. Explain in detail about steps involved in gasification process. Explain about the chemistry of gasification process. a Draw a flow chart for energy conservation routes and products from bio mass. b Discuss about conversion alternatives of gasification. Explain about producer gas and its utilization. Explain Up- draft and down-draft Gasifier with neat sketch. Explain in detail about different types of Gasifiers. Explain Cross-draft Gasifier with neat sketch. What are the advantages and dis advantages of down draft Gasifier? Explain in detail about fluidised bed Gasifier with neat sketch and what | b List out Classification of Gasifiers. [L1][CO4] c Discuss about Fixed bed and fluidized bed Gasifiers. [L3][CO4] Write about problems in developments of Gasifiers. [L1][CO4] Explain in detail about steps involved in gasification process. [L2][CO4] Explain about the chemistry of gasification process. [L2][CO4] a Draw a flow chart for energy conservation routes and products from bio mass. b Discuss about conversion alternatives of gasification. [L2][CO1] Explain about producer gas and its utilization. [L2][CO2] Explain Up- draft and down-draft Gasifier with neat sketch. [L2][CO4] Explain in detail about different types of Gasifiers. [L2][CO4] Explain Cross-draft Gasifier with neat sketch. What are the advantages and dis advantages of down draft Gasifier? Explain in detail about fluidised bed Gasifier with neat sketch and what [L2][CO4] | #### Course Code: 20AG0724 #### UNIT-IV BIOGAS | 1 | a | Discuss about Wet fermentation. | [L3][CO5] | [4M] | |----|---|--|-----------|-------| | | b | | [L3][CO5] | | | | | Discuss about Dry fermentation. | | [4M] | | | С | Explain about the movement in biogas plant. | [L2][CO5] | [4M] | | 2 | a | Explain about phases of anaerobic digestion. | [L2][CO5] | [6M] | | | b | Differentiate aerobic and anaerobic digestion. | [L4][CO5] | [6M] | | 3 | Exp | plain about the factors effecting gas generation in biogas plant. | [L2][CO5] | [12M] | | 4 | Exp | Explain in detail about considerations for design of biogas digester. | | [12M] | | 5 | a | Write about site selection for biogas plant construction. | [L1][CO5] | [8M] | | | b | Explain about materials used for biogas production. | [L1][CO5] | [4M] | | 6 | a | The following data are given for a family biogas digester suitable | [L3][CO5] | [6M] | | | | for the output of five cows; the retention time is 20 days, | | | | | | temperature 32 °C, dry matter consumed per day = 2kg, biogas | | | | | | yield is 0.24 m ³ /kg. The efficiency of burner is 60%, methane | | | | | | proportion is 0.6 heat of combustion of methane =32 MJ/m ³ | | | | | | Calculate: i) the volume of biogas digester | | | | | | ii) The power availability from the digester | | | | | b | Discuss advantages and disadvantages of floating drum type biogas | [L3][CO5] | [6M] | | | | plant. | | | | 7 | a | Explain constructional details of Deenabandu biogas plant. | [L2][CO5] | [6M] | | | b | Discuss about advantages and disadvantages of floating drum type | [L3][CO5] | [6M] | | | | biogas plant. | | | | 8 | Explain about fixed dome type biogas plant with neat sketch. | | [L2][CO5] | [12M] | | 9 | Exp | plain about floating dome type biogas plant with neat sketch. | [L2][CO5] | [12M] | | 10 | Cal | culate the volume of biogas digester suitable for the output of four | [L3][CO5] | [12M] | | | cows, and the power available from the digester. Retention time is 20 | | | | | | days, temperature 30 °C, dry matter consumed 2 kg/day, biogas yield | | | | | | 0.24 m ³ /kg, burner efficiency is 60%, and methane proportion is 0.8. | | | | | | Heat of combustion of methane may be assumed to be 28 MJ/m ³ at STP, | | | | | | Theat of compassion of mediane may be assumed to be 20 MB/III at 511, | | | | #### UNIT-V BRIQUETTING OF BIOMASS | 1 | a | What is Briquetting? Write about importance of shredding in | [L2][CO6] | [4M] | |----|-----|---|-----------|-------| | | | briquetting process. | | | | | b | Discuss about factors effecting of briquetting process. | [L3][CO6] | [4M] | | | c | What are the advantages and disadvantages of briquettes? | [L1][CO6] | [4M] | | 2 | a | Draw a flow diagram for ethanol production from sugar cane | [L2][CO6] | [4M] | | | b | Write about machines used for biomass shredding | [L1][CO6] | [8M] | | 3 | a | Write the Procedure for production of bio diesel from Jatropha | [L1][CO3] | [6M] | | | b | Explain piston type briquetting machine with neat diagram | [L2][CO6] | [6M] | | 4 | Dra | w a flow diagram for bio diesel production from Pongamia | [L2][CO3] | [4M] | | 5 | a | Explain screw type briquetting machine with neat diagram | [L2][CO6] | [8M] | | | b | Draw a flow diagram for ethanol production from corn | [L2][CO3] | [6M] | | 6 | a | Explain working principle of piston type briquetting machine with | [L2][CO6] | [8M] | | | | neat diagram | | | | | b | Write about benefits of briquetting | [L1][CO6] | [4M] | | 7 | a | Explain about different types of shredding machines are used in | [L2][CO6] | [8M] | | | | briquetting process | | | | | b | Explain about applications of briquetting | [L2][CO6] | [4M] | | 8 | a | Write the procedure for production of bio diesel from pongamia | [L1][CO3] | [6M] | | | b | Give a brief explanation about briquetting process | [L1][CO6] | [6M] | | 9 | Wr | ite a procedure for ethanol production from sugar cane. | [L1][CO3] | [12M] | | 10 | a | Draw a flow diagram for bio diesel production from Jatropha. | [L2][CO3] | [6M] | | | b | What are the steps used for briquetting process. | [L1][CO6] | [6M] | PREPARED BY: SNEHA GOUDAR